Ethylamine content and theanine biosynthesis in different organs of Camellia sinensis seedlings.

نویسندگان

  • Wei-Wei Deng
  • Shinjiro Ogita
  • Hiroshi Ashihara
چکیده

We examined the distribution of ethylamine, glutamic acid and alanine, which are utilized in theanine biosynthesis, and other major amino acids in leaves, stems, cotyledons and roots of 6-week-old tea seedlings. Ethylamine and glutamic acid, which are substrates of theanine synthetase, were distributed almost uniformly in all parts of the seedlings; the contents in micromol/g fresh wt varied from 0.44-0.88 (ethylamine) and 1.6-2.4 (glutamic acid). The content of alanine, a possible precursor of ethylamine synthesis, was significantly higher in roots (3.1 micromol/g fresh wt) than in other parts. Incorporation of radioactivity from [U-14C]-alanine into theanine was also higher in roots than in other organs. In 10-week-old seedlings, [1-14C]ethylamine was converted to theanine in young and developed leaves, stems, main and lateral roots; the highest rates of conversion were detected in the main and lateral roots. These results suggest that the theanine synthesis preferentially takes place in roots but is not restricted to them; substrates and the enzymatic machinery for theanine synthesis are available in all parts of tea seedlings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

L-Theanine Content and Related Gene Expression: Novel Insights into Theanine Biosynthesis and Hydrolysis among Different Tea Plant (Camellia sinensis L.) Tissues and Cultivars

L-Theanine content has tissues and cultivars specificity in tea plant (Camellia sinensis L.), the correlations of theanine metabolic related genes expression profiles with theanine contents were explored in this study. L-theanine contents in the bud and 1st leaf, 2nd leaf, 3rd leaf, old leaf, stem, and lateral root were determined by HPLC from three C. sinensis cultivars, namely 'Huangjinya', '...

متن کامل

Transcriptome Profiling Using Single-Molecule Direct RNA Sequencing Approach for In-depth Understanding of Genes in Secondary Metabolism Pathways of Camellia sinensis

Characteristic secondary metabolites, including flavonoids, theanine and caffeine, are important components of Camellia sinensis, and their biosynthesis has attracted widespread interest. Previous studies on the biosynthesis of these major secondary metabolites using next-generation sequencing technologies limited the accurately prediction of full-length (FL) splice isoforms. Herein, we applied...

متن کامل

Transcriptomic Analysis Reveals the Molecular Mechanisms of Drought-Stress-Induced Decreases in Camellia sinensis Leaf Quality

The tea plant [Camellia sinensis (L.) O. Kuntze] is an important commercial crop rich in bioactive ingredients, especially catechins, caffeine, theanine and other free amino acids, which the quality of tea leaves depends on. Drought is the most important environmental stress affecting the yield and quality of this plant. In this study, the effects of drought stress on the phenotype, physiologic...

متن کامل

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to L-theanine from Camellia sinensis (L.) Kuntze (tea) and improvement of cognitive function

EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to L-theanine from Camellia sinensis (L.) Kuntze (tea) and improvement of cognitive function (ID 1104, 1222, 1600, 1601, 1707, 1935, 2004, 2005), alleviation of psychological stress (ID 1598, 1601), maintenance of normal sleep (ID 1222, 1737, 2004) and reduction of m...

متن کامل

Genome-Wide Identification of Genes Probably Relevant to the Uniqueness of Tea Plant (Camellia sinensis) and Its Cultivars

Tea (Camellia sinensis) is a popular beverage all over the world and a number of studies have focused on the genetic uniqueness of tea and its cultivars. However, molecular mechanisms underlying these phenomena are largely undefined. In this report, based on expression data available from public databases, we performed a series of analyses to identify genes probably relevant to the uniqueness o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Zeitschrift fur Naturforschung. C, Journal of biosciences

دوره 64 5-6  شماره 

صفحات  -

تاریخ انتشار 2009